摘要: 介绍了自然旋光与法拉第效应偏转角的测量方法,讨论了两种效应下偏转角的影响因素,说明了两种效应的应用领域。由分析得到:自然旋光偏转角的大小只与晶体有关,与磁场无关,而旋光方向与光的传播方向有关;法拉第效应偏转角的大小正比于磁感应强度,其偏转角旋光方向只与磁场方向有关,与光的传播方向无关;光往返通过自然旋光晶体时,偏转角相互抵消,磁致旋光晶体偏转角则实现累加。利用晶体的法拉第效应,可将其制成光学隔离器或单通光闸等器件。 关键词: 自然旋光; 法拉第效应; 偏转角; 旋光方向 中图分类号: O 436.4文献标志码: Adoi: 10.3969/j.issn.1005?5630.2014.03.008 Experimental study on natural?optical rotation and Faraday effect SUN Jian, GENG Mingyang, YAO Yafeng, DENG Wei, CHU Xiangnan (College of Electronic Science, Northeast Petroleum University, Daqing 163318, China) Abstract: The deflected angle measurement method of natural?optical rotation and Faraday effect was introduced. The influencing factors of deflected angle in the two effects were discussed. The application field of two effects was explained. The conclusion was as follows:the deflected angle of natural?optical rotation only has to do with the crystal and has nothing to do with magnetic field, the optical direction has to do with propagation direction of incident light; the deflected angle of Faraday effect was proportional to the magnetic induction intensity, the optical direction has to do with magnetic field direction, but has nothing to do with propagation direction of incident light. The light passed through natural?optical crystal back and forth, deflected angle was counteract, but accumulated in the magneto?optical rotation crystal. This effect was used to produce optical isolator and single?lane optical gate. Key words: natural?optical rotation; Faraday effect; deflected angle; optical direction 引言自然界中存在一些物质,当线偏振光沿光轴方向通过这些物质后,其偏振面会发生旋转,即发生旋光现象,称之为自然旋光。旋光现象最早由阿拉果在石英晶体中发现,随后毕奥发现一些各向同性的气体和液体也具备该特性;而一些不具备自然旋光本领的晶体在磁场的作用下,偏振面产生偏转的现象称为磁光效应,该现象在1846年由法拉第首次发现,也称为法拉第效应。1理论分析线偏振光沿光轴方向入射到晶体中,其光强可以分解为左旋圆偏振光和右旋圆偏振光,对应的折射率分别为nL和nR,它们在晶体中传播距离l后产生的相位差可以用角位移表示为θ=12(θL-θR)=πλ(nL-nR)l(1)在外加磁场为零的情况下,晶体本身满足nL-nR≠0,则该晶体具备自然旋光特性,自然旋光是晶体本身具有的一种旋光本领,不需要外加磁场,可以直接测量该旋光晶体的偏转角,实验装置如图1所示。只有在外加磁场不为零时,晶体才满足nL-nR≠0,则该晶体为磁光晶体,利用法拉第效应来描述,测量其偏转角时需要外加磁场,实验装置如图2所示,通过直流励磁和交流励磁的开关来控制恒定磁场和时变磁场[1?6]。光学仪器第36卷 第3期孙鉴,等:自然旋光与法拉第效应的实验研究
图1自然旋光实验装置 Fig.1The natural?optical rotation experimental device图2法拉第效应实验装置 Fig.2The Faraday effect experimental device
磁光调制器是由在铽玻璃周围环绕交流激励电信号的励磁线圈构成。假定线圈所加交流电信号为i=i0sin(ωt)时,产生的时变磁场为B=B0sin(ωt),则晶体的磁致旋转角θ=θ0sin(ωt),根据马吕斯定律I=I0cos2α,检偏器的输出光强可得I=I0cos2(α+θ)=I02[1+2cos(2(α+θ))](2)其中α为起偏器和检偏器主截面的初始夹角。利用三角函数公式,式(2)可变形为I=I02[1+2cos(2α)cos(2θ)-2sin(2α)sin(2θ)](3)当α=0,将cos(δsin(ωt))=J0(δ)+2J2(δ)cos(2ωt)+4J4(δ)cos(4ωt)+…代入式(3)可得I=I02[1+2J0(2θ0)+4J2(2θ0)cos(2ωt)+8J4(2θ0)cos(4ωt)+…](4)可以发现:起偏器和检偏器偏振轴平行时,输出光中出现了调制信号的倍频信号。2测量方法在实验过程中,使用CGT?1磁光调制实验仪控制直流和交流励磁信号以及探测光强,激光器波长λ=632.8 nm,石英晶体长度l=15.0 mm,直流励磁的铽玻璃长度l=25.3 mm。自然旋光的实验测量如图1所示,通过控制交流励磁开关来选用直接测量或交流调制测量[7?9]。(1)直接测量法按图1所示的实验装置图调节好光路并固定,取下石英晶体,光源发出的光经过准直透镜和起偏器,变成线偏振光,为了便于观察和测量,调节起偏器和检偏器处于正交状态,此时探测器读数为最小值0.02,记录下检偏器的角度θ0;将石英晶体放到光路中,为了区分双折射现象引起的偏转,晶体光轴必须垂直入射面,从起偏器出射的线偏振光入射到石英晶体中,就满足了与晶体光轴方向平行的条件,出射光通过检偏器后探测器的读数会变大;旋转检偏器将探测器的读数恢复到初始值,记录下起偏器的角度θ1,则图3倍频信号波形图 |