摘要:对海洋硅藻硝酸盐转运蛋白NAT3编码基因的单拷贝插入转基因水稻纯系进行荧光定量PCR检测,获得NAT3基因的超表达株系。NAT3超表达株系中硝酸还原酶基因OsNR1的转录较非转基因对照中花11显著增强。对超表达株系及对照中花11进行不同氮素浓度的培养和栽培试验。结果表明,在低氮培养基培养条件下,转NAT3基因水稻的幼苗干重较中花11高;在低氮盆栽条件下,转NAT3基因超表达株系的叶绿素含量、生物学产量和植株的含氮量均较相同氮素条件下的中花11高,说明NAT3基因超表达能提高转基因水稻在低氮条件下的氮素利用效率,促进水稻生长。 关键词:转基因水稻;硝酸盐转运蛋白;氮素利用效率 中图分类号:S511 文献标识码:A 文章编号:0439-8114(2014)23-5653-04 DOI:10.14088/j.cnki.issn0439-8114.2014.23.009 水稻是我国主要的粮食作物,种植面积占粮食作物总面积的27%,产量占粮食总产的44%[1]。长期以来,水稻育种多以高产、耐肥抗倒作为主要育种目标,因为追求高产导致氮肥施用量大幅度增加[2]。大量氮肥的使用不仅提高了水稻的种植成本,导致增产不增收,而且还带来水体硝酸盐污染的潜在危险,对生态环境和人类健康产生极为不利的影响[3]。由于氮肥利用率的下降,氮肥过量施用造成的环境负效应也越来越引起广泛关注[4-8]。因此,通过遗传改良提高水稻品种的氮素吸收利用能力,降低氮肥使用量是发展水稻生产急需解决的重要问题。 水稻根系对土壤中氮素的吸收是决定水稻氮素利用效率的前提。硝酸盐是植物可直接利用的主要氮源之一,植物对硝酸盐的吸收主要依靠硝酸盐转运蛋白完成。深海硅藻硝酸盐转运蛋白基因与氮具有高度亲和性,在低氮环境下转录水平显著升高,可使硅藻从硝酸盐浓度极低的海水中富集硝酸盐[9]。NAT3是刘昱辉等[10]从深海硅藻中克隆的一个硝酸盐转运蛋白基因,通过农杆菌介导的遗传转化方法,将NAT3基因导入水稻品种中花11,获得了NAT3基因的转基因植株[11]。本研究通过荧光定量PCR对转基因水稻中NAT3基因表达量进行分析,获得NAT3基因超表达纯系,并进一步通过不同氮浓度的培养基培养及盆栽试验,测定转基因水稻与对照受体材料中花11的生长量及植株含氮量,并分析NAT3基因的表达对转基因水稻的氮素利用率的影响,为应用转基因技术培育氮肥高效利用水稻提供理论依据。本研究对减少水稻生产中的氮肥施用量、节约水稻生产成本、降低环境污染、促进农业高效节能可持续发展具有重要意义。 1 材料与方法 1.1 试验材料 本试验转基因株系是以中花11为受体的转NAT3基因T4代单拷贝插入纯系[11]。非转基因水稻对照材料为中花11,由湖北省粮食作物种质创新与遗传改良重点实验室繁殖保存。 1.2 NAT3基因及硝酸还原酶基因OsNR1表达量的测定 取三叶一心期的水稻幼苗(包括根),利用Trizol试剂抽提总RNA,通过琼脂糖凝胶和紫外分光光度计测定RNA质量和浓度。取5 μg RNA反转录酶合成单链cDNA,采用Roche公司的定量检测试剂盒FastStart Universal SYBR Green Master (Rox)进行定量PCR分析,内标基因为actin基因。引物由Invitrogen中国公司合成。扩增体系25 μL,其中12.5 μL 2× qPCR Mix ,2.0 μL引物,2.5 μL反转录产物,8.0 μL ddH2O 。扩增程序为预变性95 ℃,10 min;95 ℃变性15 s, 58 ℃下退火20 s,72 ℃下延伸20 s, 40 次循环;72 ℃延伸5 min。采用ΔΔCT法进行结果处理。 1.3 不同氮浓度培养基上转NAT3基因水稻幼苗的生长状况测定 |