1.5重组质粒pMD18T-Pxp38ORF的构建与鉴定
将上述PCR产物经DNA纯化回收试剂盒回收,取100ng与25ngpMD18-T载体16℃下连接4h。将连接产物转化EcoliDH5α感受态细胞,在LB+Amp平板上通过蓝白斑筛选转化子,挑取3个白斑转化子接种到液体LB+Amp培养基中扩大培养。使用质粒小提试剂盒提取重组质粒,利用限制性内切酶EcoRⅠ和HindⅢ对其进行双酶切,酶切产物经1%琼脂糖凝胶电泳,紫外凝胶成像系统下拍照。
1.6生物信息学分析
利用Chromas软件分析DNA测序结果;通过VectorNTI软件根据p38ORF序列推导蛋白质一级结构;通过SMART网站(http://smartembl-heidelbergde/)分析预测小菜蛾Pxp38蛋白结构域;利用Blast软件比较不同物种间p38蛋白一级结构的同源性;小菜蛾基因组数据库DBM-DB的网址是http://wwwiaefafueducn/dbm/。
2结果与分析
2.1Pxp38基因ORF的获得
利用引物Pxp38-F和Pxp38-R克隆Pxp38基因的ORF片段,结果如图1所示,实验组得到了大小约1kb的单一DNA条带,对照组只得到了非特异性杂带,说明成功获得了Pxp38基因的ORF片段。
3讨论本研究首次克隆了小菜蛾的Pxp38MAPK基因,并对其进行了生物信息学分析,揭示出Pxp38基因是一个潜在的丝氨酸/苏氨酸类蛋白激酶,从最简单的真核模式生物酿酒酵母到高等哺乳动物人类的细胞中都保守存在。本研究为进一步深入探讨Pxp38MAPK基因的功能,揭示小菜蛾响应外界胁迫以及产生药物耐受的分子机制提供了基础,为开辟小菜蛾防治新途径提供参考。
参考文献:
[1]Talekar N S, Shelton A M Biology, ecology, and management of the diamondback moth [J] Annu Rev Entomol , 1993, 38: 275-301
[2]Furlong M J, Wright D J, Dosdall L M Diamondback moth ecology and management: problems, progress, and prospects [J] Annu Rev Entomol , 2013, 58: 517-541
[3]Tabashnik B E, Huang F, Ghimire M N, et al Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance [J] Nat Biotechnol, 2011,29(12):1128-1131
[4]Baxter S W, Badenes-Pérez F R, Morrison A, et al Parallel evolution of Bacillus thuringiensis toxin resistance in lepidoptera [J] Genomics, 2011, 189(2): 675-679
[5]He W, You M, Vasseur L, et al Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth, Plutella xylostella [J] Genomics, 2012, 99(3): 169-177
[6]Li X, Schuler M A, Berenbaum M R Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics[J] Annu Rev Entomol , 2007, 52: 231-253
[7]You M, Yue Z, He W, et al A heterozygous moth genome provides insights into herbivory and detoxification [J] Nat Genet , 2013, 45(2): 220-225
[8]Manning G, Whyte D B, Martinez R, et al The protein kinase complement of the human genome [J] Science, 2002, 298(5600): 1912-1934
[9]Gustin M C, Albertyn J, Alexander M, et al MAP kinase pathways in the yeast Saccharomyces cerevisiae [J] Microbiol Mol Biol Rev , 1998, 62(4): 1264-1300
[10]Rodriguez M C, Petersen M, Mundy J Mitogen-activated protein kinase signaling in plants [J] Annu Rev Plant Biol , 2010, 61: 621-649
[11]Pearson G, Robinson F, Beers Gibson T, et al Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions [J] Endocr Rev , 2001, 22 (2): 153-183
[12]Theodosiou A, Ashworth A MAP kinase phosphatases [J] Genome Biol , 2002, 3(7): REVIEWS3009.
|